
Angular Measure

Size and scale are often specified by measuring lengths and angles. The concept of length measurement is fairly
intuitive to most of us. The concept of angular measurement may be less familiar, but it too can become second
nature if you remember a few simple facts.

A full circle contains 360 degrees (360°). Thus, the half-circle that stretches from horizon to horizon, passing
directly overhead and spanning the portion of the sky visible to one person at any one time, contains 180°.

Each 1° increment can be further subdivided into fractions of a degree, called arc minutes. There are 60 arc
minutes (written 60´) in one degree. (The term "arc" is used to distinguish this angular unit from the unit of
time.) Both the Sun and the Moon project an angular size of 30 arc minutes on the sky. Your little finger, held
at arm’s length, does about the same, covering about a 40' slice of the 180° horizon-to-horizon arc.

An arc minute can be divided into 60 arc seconds (60´´). Put another way, an arc minute is 1/60 of a degree,
and an arc second is 1/60 1/60 = 1/3600 of a degree. An arc second is an extremely small unit of angular
measure—it is the angular size of a centimeter-sized object (a dime, say) at a distance of about two kilometers
(a little over a mile).

Don’t be confused by the units used to measure angles. Arc minutes and arc seconds have nothing to do with the
measurement of time, and degrees have nothing to do with temperature. Degrees, arc minutes, and arc seconds are
simply ways to measure the size and position of objects in the universe. The angular size of an object depends
both on its actual size and on its distance from us. For example, the Moon, at its present distance from Earth, has
an angular diameter of 0.5°, or 30´. If the Moon were twice as far away, it would appear half as big—15´ across—
even though its actual size would be the same. Thus, angular size by itself is not enough to determine the actual
diameter of an object—the distance must also be known.

Celestial Coordinates

For more precise measurements, astronomers find it helpful to lay down a system of celestial coordinates on the
sky. If we think of the stars as being attached to the celestial sphere centered on Earth, then the familiar system of
latitude and longitude on Earth’s surface extends naturally to cover the sky. The celestial analogs of latitude and
longitude on Earth’s surface are called declination and right ascension, respectively.

The Celestial Sphere - The (imaginary) celestial sphere around the Earth, on which objects in the
sky can turn. In reality, it is the Earth that turns around the axis, creating the illusion that the sky
revolves around us. The Earth in this picture has been tilted so that your location is at the top and the
North Pole is where the little N is.

The simplest method of locating
stars in the sky is to specify their
constellation and then rank the
stars in it in order of brightness.
The brightest star is denoted by
the Greek letter (alpha), the
second brightest by (beta), and
so on. Thus, the two brightest
stars in the constellation Orion —
Betelgeuse and Rigel—are also
known as Orionis and
Orionis, respectively.



 Declination (dec) is measured in degrees (°) north or south of
the celestial equator, just as latitude is measured in degrees
north or south of Earth’s equator. Thus, the celestial equator is
at a declination of 0°, the north celestial pole is at +90°, and the
south celestial pole is at -90° (the minus sign here just means
"south of the celestial equator").

 Right ascension (RA) is measured in units called hours,
minutes, and seconds, and it increases in the eastward direction.
The angular units used to measure right ascension are
constructed to parallel the units of time, in order to assist
astronomical observation. The two sets of units are connected
by the rotation of Earth (or of the celestial sphere). In 24 hours,
Earth rotates once on its axis, or through 360°. Thus, in a time
period of one hour, Earth rotates through 360°/24 = 15°, or 1h.
In one minute of time, Earth rotates through an angle of 1m =
15°/60 = 0.25°, or 15 arc minutes (15´). In one second of time,
Earth rotates through an angle of 1s = 15´/60 = 15 arc seconds
(15´´). The choice of zero right ascension is conventionally
taken to be the position of the Sun in the sky at the instant of the
vernal equinox.

Earth’s Orbital Motion

The Earth is revolving around the Sun. Because of this motion, the Sun appears (to an observer on Earth) to move
relative to the background stars over the course of a year. This apparent motion of the Sun on the sky traces out a
path on the celestial sphere known as the ecliptic.

Right ascension and declination specify locations on the sky in much the same way as longitude and latitude
allow us to locate a point on Earth’s surface. For example, to find Washington on Earth, look 77° west of the
Greenwich Meridian (the line on Earth’s surface with a longitude of zero) and 39° north of the equator.
Similarly, to locate the star Betelgeuse on the celestial sphere, look 5h52m0s east of the vernal equinox (the line
on the sky with a right ascension of zero) and 7°24' north of the celestial equator. The star Rigel, also
mentioned earlier, lies at 5h13m36s (RA), -8°13´ (dec). Right ascension and declination are fixed on the
celestial sphere. Although the stars appear to move across the sky because of Earth’s rotation, their celestial
coordinates remain constant .

The 12 constellations through which the Sun passes as it moves along the ecliptic—that is, the
constellations we would see looking in the direction of the Sun, if they weren’t overwhelmed by the Sun’s
light are collectively known as the zodiac.



The ecliptic forms a great circle on the celestial sphere, inclined at an angle of 23.5° to the celestial equator. In
reality the plane of the ecliptic is the plane of Earth’s orbit around the Sun. Its tilt is a consequence of the
inclination of our planet’s rotation axis to its orbital plane.

The Measurement of Distance and Parallax

The time required for Earth to complete exactly one orbit around the Sun, relative to the stars, is called a
sidereal year. One sidereal year is 365.256 mean solar days long.

Seasons
(a) The apparent path of the Sun on the

celestial sphere and (b) its actual
relation to Earth’s rotation and
revolution. The seasons result from
the changing height of the Sun above
the horizon. At the summer solstice
(the points marked 1), the Sun is
highest in the sky, as seen from the
Northern Hemisphere, and the days
are longest. In the "celestial sphere"
figure (part a), the Sun is at its
northernmost point on its path around
the ecliptic; in reality

(b) the summer solstice corresponds to
the point on Earth’s orbit where our
planet’s North Pole points most
nearly toward the Sun. The reverse is
true at the winter solstice (point 3).
At the vernal and autumnal
equinoxes, day and night are of equal
length. These are the times when, as
seen from Earth (a), the Sun crosses
the celestial equator. They correspond
to the points in Earth’s orbit when our
planet’s axis is perpendicular to the
line joining Earth and Sun (b).

Triangulation Surveyors often use simple geometry
and trigonometry to estimate the distance to a faraway
object. By measuring the angles at A and B and the
length of the baseline, the distance can be calculated
without the need for direct measurement.



Parallax
(a) This imaginary triangle extends from Earth

to a nearby object in space (such as a planet).
The group of stars at the top represents a
background field of very distant stars.

(b) Hypothetical photographs of the same star
field showing the nearby object’s apparent
displacement, or shift, relative to the distant,
undisplaced stars.

This apparent displacement of a foreground
object relative to the background as the
observer’s location changes is known as
parallax.
The amount of parallax is thus inversely
proportional to an object’s distance. Small
parallax implies large distance, and large parallax
implies small distance. Knowing the amount of
parallax (as an angle) and the length of the
baseline, we can easily derive the distance
through triangulation.


